En este portal utilizamos datos de navegación / cookies propias y de terceros para gestionar el portal, elaborar información estadística, optimizar la funcionalidad del sitio y mostrar publicidad relacionada con sus preferencias a través del análisis de la navegación. Si continúa navegando, usted estará aceptando esta utilización. Puede conocer cómo deshabilitarlas u obtener más información
aquí
Ya tienes una cuenta vinculada a EL TIEMPO, por favor inicia sesión con ella y no te pierdas de todos los beneficios que tenemos para tí. Iniciar sesión
¡Hola! Parece que has alcanzado tu límite diario de 3 búsquedas en nuestro chat bot como registrado.
¿Quieres seguir disfrutando de este y otros beneficios exclusivos?
Adquiere el plan de suscripción que se adapte a tus preferencias y accede a ¡contenido ilimitado! No te
pierdas la oportunidad de disfrutar todas las funcionalidades que ofrecemos. 🌟
¡Hola! Haz excedido el máximo de peticiones mensuales.
Para más información continua navegando en eltiempo.com
Error 505
Estamos resolviendo el problema, inténtalo nuevamente más tarde.
Procesando tu pregunta... ¡Un momento, por favor!
¿Sabías que registrándote en nuestro portal podrás acceder al chatbot de El Tiempo y obtener información
precisa en tus búsquedas?
Con el envío de tus consultas, aceptas los Términos y Condiciones del Chat disponibles en la parte superior. Recuerda que las respuestas generadas pueden presentar inexactitudes o bloqueos, de acuerdo con las políticas de filtros de contenido o el estado del modelo. Este Chat tiene finalidades únicamente informativas.
De acuerdo con las políticas de la IA que usa EL TIEMPO, no es posible responder a las preguntas relacionadas con los siguientes temas: odio, sexual, violencia y autolesiones
Noticia
Nuevo modelo de IA promete precisar el diagnóstico y tratamiento de arritmias de corazón
Este método mejoraría la eficacia de una de las técnicas terapéuticas más frecuentes para esta condición.
Mediante nuevas técnicas de inteligencia artificial, como las de aprendizaje automático, será posible determinar con precisión dónde se desencadenan algunas arritmias cardíacas. Ese es el objetivo de una investigación liderada por la Universidad Pompeu Fabra de Barcelona (UPF), publicada recientemente en la revista Frontiers in Cardiovascular Medicine.
Fijar el lugar de origen de estas arritmias permitirá aumentar la eficacia de uno de los procedimientos más habituales para tratarlas: la ablación por radiofrecuencia, que esencialmente consiste en la introducción de un catéter en uno de los ventrículos del corazón, con la que se emite la radiofrecuencia necesaria para eliminar la alteración del ritmo cardíaco.
Todas las arritmias ventriculares se deben a alteraciones del ritmo normal del corazón que se inician en las cavidades internas del órgano (los ventrículos), pero las hay de diferentes tipologías. Este nuevo estudio se refiere a la arritmia ventricular del tracto de salida (OTVA por sus siglas en inglés), la región que conecta los ventrículos con las principales arterias.
Se ha examinado el caso de 114 pacientes del Hospital Teknon en Barcelona y 31 del Hospital Clínic de Barcelona. Foto:iStock
La OTVA es la manifestación más común de las denominadas arritmias ventricular idiopáticas, aquellas que se producen por causas que no se pueden identificar a través de los métodos convencionales o en pacientes sin cardiopatías estructurales, por lo que es más difícil precisar sus motivos.
La investigación realizada ha demostrado la eficacia de este método en arritmias ventriculares originadas tanto en el ventrículo derecho como en el izquierdo, a partir de un estudio que ha combinado el análisis de 2.496 casos simulados con el de pacientes reales.
De este segundo grupo, se ha examinado el caso de 114 pacientes del Hospital Teknon en Barcelona y 31 del Hospital Clínic de Barcelona y otros 334 correspondientes a un estudio realizado en China (Zheng et al.).
“La metodología utilizada hace que el sistema sea robusto y garantiza interpretabilidad para cualquier análisis posterior, por ejemplo, la identificación del sitio de origen específico de la arritmia”, asegura Álvaro J. Bocanegra-Pérez, investigador del grupo Physense de la UPF.
“Este acercamiento multimodal e interpretable es clave para el trabajo entre médicos e ingenieros, ya que permite realizar aportaciones a la metodología de ambas partes”, añade. Actualmente, más allá de la medicación para corregir las alteraciones del ritmo cardíaco, el tratamiento más frecuente de la arritmia OTVA es la ablación por radiofrecuencia.
Mayores probabilidades del tratamiento
Para aplicar la técnica de ablación por radiofrecuencia, es necesario primero realizar un mapeo del circuito eléctrico que origina una arrítmica cardíaca para después ubicar el catéter emisor de radiofrecuencia en la zona del trastorno. Esto genera el aumento de temperatura necesario para eliminar la parte específica del tejido cardíaco donde se desencadena la arritmia.
Hasta ahora, la efectividad de estos tratamientos está por debajo de lo deseable. Para mejorarla, es necesario precisar más el lugar de origen de la arritmia, de modo que el catéter emisor pueda actuar sobre la zona exacta donde se origina. Esto aumentaría las probabilidades de éxito del tratamiento y se reducirían los tiempos de intervención y las tasas de recaída.
Los métodos diagnósticos actuales se basan fundamentalmente en el análisis de los electrocardiogramas (ECG) Foto:iStock
En el nuevo artículo, los investigadores proponen un modelo basado en IA y Machine learning que puede mejorar sustancialmente la precisión de diagnósticos y tratamientos actuales de las arritmias OVTA.
Los métodos diagnósticos actuales se basan fundamentalmente en el análisis de los electrocardiogramas (ECG) realizados antes de la operación, a partir de la inspección visual realizada por profesionales médicos.
Pese a su experiencia, la inspección visual está sujeta al error humano y puede derivar en diagnósticos equivocados o poco precisos, lo que a su vez puede reducir la eficacia del tratamiento por debajo de los niveles óptimos.
Durante los últimos años ya se han desarrollado métodos más avanzados para tratar de superar las limitaciones de las inspecciones visuales de los electrocardiogramas a partir de modelos computacionales y enfoques de aprendizaje automático (ML). A pesar de ello, los métodos ideados hasta ahora todavía presentan limitaciones.
Precisión de los diagnósticos
El actual estudio consigue el análisis de forma integrada y automática de datos clínicos reales referentes a la edad, sexo y antecedentes médicos del paciente –especialmente sobre si ha sufrido previamente hipertensión o no– y electrocardiogramas (tanto reales como simulados por métodos computacionales).
Esto permitirá precisar el lugar de origen de las arritmias en cada caso particular, reducir el margen de error respecto a las inspecciones visuales, además de facilitar la interpretación de los resultados.
Más allá de esta investigación, habrá que seguir trabajando en esta línea de investigación, analizando datos de un mayor número de pacientes para articular un sistema más robusto con potencial para generalizarse a la práctica clínica.