En este portal utilizamos datos de navegación / cookies propias y de terceros para gestionar el portal, elaborar información estadística, optimizar la funcionalidad del sitio y mostrar publicidad relacionada con sus preferencias a través del análisis de la navegación. Si continúa navegando, usted estará aceptando esta utilización. Puede conocer cómo deshabilitarlas u obtener más información aquí

CLUB VIVAMOS
Suscríbete
Disfruta de los beneficios de El Tiempo
SUSCRÍBETE CLUB VIVAMOS

¡Hola !, Tu correo ha sido verficado. Ahora puedes elegir los Boletines que quieras recibir con la mejor información.

Bienvenido , has creado tu cuenta en EL TIEMPO. Conoce y personaliza tu perfil.

Hola Clementine el correo [email protected] no ha sido verificado. Verificar Correo

icon_alerta_verificacion

El correo electrónico de verificación se enviará a

Revisa tu bandeja de entrada y si no, en tu carpeta de correo no deseado.

SI, ENVIAR

Ya tienes una cuenta vinculada a EL TIEMPO, por favor inicia sesión con ella y no te pierdas de todos los beneficios que tenemos para tí. Iniciar sesión

Hola, bienvenido

¿Cómo está el clima en Bogotá?
¿Cómo se llama el hijo de Petro?
¿El pico y placa en Bogotá como quedaría para el 2024?

Noticia

¿Ya no es el diamante? Encuentran material que sería el más fuerte de todo el universo

El hallazgo también contribuye al estudio de los interiores de planetas más allá del sistema solar.

Diamante en bruto.

Los diamantes son un mineral compuesto de carbono puro y a veces contienen rastros de nitrógeno. Foto: Tomada de Reuters

Alt thumbnail

Actualizado:

00:00
00:00

Comentar

Whatsapp iconFacebook iconX iconlinkeIn iconTelegram iconThreads iconemail iconiconicon
Por décadas, el diamante fue considerado el material más duro conocido por la humanidad. Sin embargo, un descubrimiento realizado por investigadores del Laboratorio Nacional Lawrence Livermore (LLNL) y de la Universidad del Sur de Florida (USF), en Estados Unidos, cambió esta idea.
El equipo identificó una nueva forma cristalina de carbono denominada BC8. Según sus estudios, esta estructura cristalina supera en un 30% la resistencia a la compresión de los diamantes tradicionales.
Este material se distingue por su forma tetraédrica y por carecer de los "planos de clivaje" que caracterizan a los diamantes y que debilitan su estructura.
El descubrimiento fue posible gracias al superordenador Frontier, ubicado en el Oak Ridge Leadership Computing Facility, en Estados Unidos.
Mediante simulaciones de dinámica molecular de millones de átomos de carbono bajo condiciones extremas, los investigadores determinaron que el BC8 puede existir de manera estable.
Ivan Oleynik, coautor del estudio y profesor de la USF, declaró que esta forma cristalina podría formarse naturalmente en exoplanetas ricos en carbono, donde las condiciones extremas facilitarían su creación.
Oleynik afirmó que "una comprensión en profundidad de las propiedades de la fase de carbono BC8 se vuelve crítica para el desarrollo de modelos interiores precisos de estos exoplanetas".
Desde los años 80, se había especulado con la posibilidad de que el carbono pudiera adoptar esta forma ultradensa bajo condiciones específicas de alta presión y temperatura.
"Predijimos que la fase BC8 posterior al diamante sólo sería accesible experimentalmente dentro de una estrecha región de alta presión y alta temperatura del diagrama de fases del carbono", explicó Oleynik.
Intentos anteriores para identificar esta estructura no habían tenido éxito. En 2009, un experimento de los Laboratorios Nacionales Sandia insinuó su existencia sin lograr determinar su estructura atómica.
Años más tarde, en 2015, la Instalación Nacional de Ignición del LLNL empleó técnicas de difracción de rayos X para explorar formas cristalinas del carbono a presiones extremas, pero los intentos también resultaron infructuosos.
Gracias a los avances en simulaciones computacionales, el equipo logró identificar las condiciones específicas en las que el BC8 puede formarse.
"Gracias a la eficiente implementación de este potencial en el Frontier basado en GPU, ahora podemos simular con precisión la evolución temporal de miles de millones de átomos de carbono en condiciones extremas a escalas experimentales de tiempo y longitud", indicó Oleynik.
Este descubrimiento abre nuevas posibilidades en el campo de la ciencia de materiales y en el estudio de exoplanetas. Los investigadores planean continuar explorando cómo este material puede ser producido experimentalmente y cómo podría ser aplicado en distintas áreas tecnológicas.

Sigue toda la información de Vida en Facebook y X, o en nuestra newsletter semanal.

00:00
00:00

Comentar

Whatsapp iconFacebook iconX iconlinkeIn iconTelegram iconThreads iconemail iconiconicon

Conforme a los criterios de

Logo Trust Project
Saber más
Sugerencias
Alt thumbnail

BOLETINES EL TIEMPO

Regístrate en nuestros boletines y recibe noticias en tu correo según tus intereses. Mantente informado con lo que realmente te importa.

Alt thumbnail

EL TIEMPO GOOGLE NEWS

Síguenos en GOOGLE NEWS. Mantente siempre actualizado con las últimas noticias coberturas historias y análisis directamente en Google News.

Alt thumbnail

EL TIEMPO WHATSAPP

Únete al canal de El Tiempo en WhatsApp para estar al día con las noticias más relevantes al momento.

Alt thumbnail

EL TIEMPO APP

Mantente informado con la app de EL TIEMPO. Recibe las últimas noticias coberturas historias y análisis directamente en tu dispositivo.

Alt thumbnail

SUSCRÍBETE AL DIGITAL

Información confiable para ti. Suscríbete a EL TIEMPO y consulta de forma ilimitada nuestros contenidos periodísticos.